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clang -target bpf ...

Framework to extend the OS kernel

➔ BPF as a general purpose engine with minimal instruction set
➔ Allows for running programs in kernel to customize its behavior
➔ Without changing kernel’s source, w/o need for reboot, w/o crashing

Use Cases

➔ Networking
◆ Denial-of-service protection
◆ Load-balancing, gateways, firewalling
◆ Reduction of attack surface
◆ Customization of host stack (e.g. TCP, K8s, ...)

➔ Security observability
➔ Security enforcement
➔ Kernel tracing and profiling [ https://ebpf.io/what-is-ebpf ]

What is BPF?

Kernel (BPF runtime)

BPF Loader

Orchestrator
(Application)

https://ebpf.io/what-is-ebpf


What is BPF?

BPF as new type of software

Execution 
model

User 
defined

Compilation Security Failure mode
Resource 

access

User task yes any user based abort syscall, fault

Kernel task no static none panic direct

BPF event yes JIT, CO-RE verified, JIT
error 

message
restricted 
helpers

[ Gregg, BPF Internals, LISA’21 ]

https://www.usenix.org/conference/lisa21/presentation/gregg-bpf


BPF program state model

What is BPF?

Enabled

Loaded

Off-CPU

BPF

Kernel

On-CPU

program ended

event fires

attach helpers

Sleeping

preempt

page fault

Spinning

spinlock
(restricted state)

[ Gregg, BPF Internals, LISA’21 ]

https://www.usenix.org/conference/lisa21/presentation/gregg-bpf


BPF Verifier

Static code analyzer walking in-kernel copy of BPF program instructions

➔ Ensuring program termination
◆ DFS traversal to check program is a DAG
◆ Preventing unbounded loops
◆ Preventing out-of-bounds or malformed jumps
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BPF Verifier

Static code analyzer walking in-kernel copy of BPF program instructions

➔ Ensuring program termination
◆ DFS traversal to check program is a DAG
◆ Preventing unbounded loops
◆ Preventing out-of-bounds or malformed jumps

➔ Ensuring memory safety
◆ Preventing out-of-bounds memory access
◆ Preventing use-after-free bugs and object leaks
◆ Also mitigating vulnerabilities in the underlying hardware (Spectre)

➔ Ensuring type safety
◆ Preventing type confusion bugs
◆ BPF Type Format (BTF) for access to (kernel’s) aggregate types

➔ Preventing hardware exceptions (division by zero)
◆ For unknown scalars, instructions rewritten to follow aarch64 spec



BPF Verifier

Works by simulating execution of all paths of the program

➔ Follows control flow graph
◆ For each instruction computes set of possible states (BPF register set & stack)
◆ Performs safety checks (e.g. memory access) depending on current instruction
◆ Register spill/fill tracking for program’s private BPF stack
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BPF Verifier

Works by simulating execution of all paths of the program

➔ Follows control flow graph
◆ For each instruction computes set of possible states (BPF register set & stack)
◆ Performs safety checks (e.g. memory access) depending on current instruction
◆ Register spill/fill tracking for program’s private BPF stack

➔ Back-edges in control flow graph
◆ Bounded loops by brute-force simulating all iterations up to a limit

➔ Dealing with potentially large number of states
◆ Path pruning logic compares current state vs prior states

● Current path “equivalent” to prior paths with safe exit?
◆ Function-by-function verification for state reduction
◆ On-demand scalar precision (back-)tracking for state reduction
◆ Terminates with rejection upon surpassing “complexity” threshold



BPF Verifier

BPF register state tracking

BPF
reg

type

id

off

var_off

s64min

s64max

u64min

u64max

s32min

s32max

u32min

u32max

u32

u32

s32

tnum

s64

s64

u64

u64

s32

s32

u32

u32

uninit, scalar, ptr_to_* types. Types can be 
composable, e.g. or’ed with ptr_maybe_null.

Fixed part of pointer offset (pointer types only).

tnum
value u64

mask u64

Represents knowledge of actual
value for scalars (known and 
unknown bits).

Determined signed and unsigned 64 and 32-bit (sub-register) bounds.

Coupled to the var_off tnum, holding a lower and upper bound of the 
unknown value.

Used to determine if any memory access using this register will result in a 
bad access.

…

Identifier for state propagation (e.g. learned bits from conditions)



Short primer on BPF tristate numbers (tnums)

Example, 4 bit tnum:

010X → v = 0100, m = 0001
010X represents S { 0100, 0101 } → { 4, 5 }

XXXX → v = 0000, m = 1111
XXXX represents S { 0000, 0001, ..., 1111 } → { 0, 1, ..., 15 }

tnum and 64/32 bit min/max bounds relation:

Both needed, verifier propagates & refines knowledge between them.

Example state:

R → { 64 bit bounds [ 1, 0x77fffffff ],
           32 bit bounds [ 0,   0x7fffffff ],
               tnum v = 0, m = 0x77fffffff }

BPF Verifier

tnum
value u64

mask u64

P.value P.mask P.state

0 0 0

1 0 1

0 1 X

1 1 NaN

for each bit position P



BPF Verifier

Short primer on BPF tristate numbers (tnums)

tnum
value u64

mask u64

Example, 4 bit tnum addition:

     10X0 → v =   1000, m =   0010  → { 8, 10 }
+   10X1 → v =   1001, m =   0010  → { 9, 11 }
= 10XX1 → v = 10001, m = 00110 → { 17, 19, 21, 23 }

[ Vishwanathan et al.,  Sound, Precise, and Fast Abstract Interpretation with Tristate Numbers ]

https://arxiv.org/abs/2105.05398


BPF Verifier

Short primer on BPF tristate numbers (tnums)

tnum
value u64

mask u64

Example, 4 bit tnum multiplication:

       X01 → v =     001, m =      100 → { 1, 5 }
*     X10 → v =     010, m =      100 → { 2, 6 }
= XXX10 → v = 00010, m = 11100 → { 2, 6, 10, 14, 18, 22, 26, 30 }

[ Vishwanathan et al.,  Sound, Precise, and Fast Abstract Interpretation with Tristate Numbers ]

https://arxiv.org/abs/2105.05398


BPF Verifier

Toy example

struct {
  uint8_t index;
  int32_t value;
  int32_t array[256];
} s;

s.array[s.index] = -s.value;



BPF Verifier

Toy example

struct {
  uint8_t index;
  int32_t value;
  int32_t array[256];
} s;

s.array[s.index] = -s.value;

BPF bytecode

; r0 points to s
r1 = *(u8*)(r0 + offsetof(s, index))
r2 = *(u32*)(r0 + offsetof(s, value))
r0 += offsetof(s, array)
r1 *= sizeof(int32_t)
r0 += r1
r2 = -r2
*(u32*)(r0) = r2



BPF Verifier

BPF bytecode: ; bpf_reg_state[]:

; r0 points to s ; r0 map_value, off=0, vs=1032
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     var_off=(0x0; 0xff)
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     var_off=(0x0; 0xffffffff)



BPF Verifier

BPF bytecode: ; bpf_reg_state[]:

; r0 points to s ; r0 map_value, off=0, vs=1032

r1 = *(u8*)(r0 + offsetof(s, index)) ; r1 umax_value=255,
     var_off=(0x0; 0xff)

r2 = *(u32*)(r0 + offsetof(s, value)) ; r2 umax_value=4294967295,
     var_off=(0x0; 0xffffffff)

r0 += offsetof(s, array) ; r0 map_value, off=8, vs=1032



BPF Verifier

BPF bytecode: ; bpf_reg_state[]:

; r0 points to s ; r0 map_value, off=0, vs=1032

r1 = *(u8*)(r0 + offsetof(s, index)) ; r1 umax_value=255,
     var_off=(0x0; 0xff)

r2 = *(u32*)(r0 + offsetof(s, value)) ; r2 umax_value=4294967295,
     var_off=(0x0; 0xffffffff)

r0 += offsetof(s, array) ; r0 map_value, off=8, vs=1032
r1 *= sizeof(int32_t) ; r1 umax_value=1020,

     var_off=(0x0; 0x3fc)

; r1 ∈ {0, 4, 8, …, 1020}



BPF Verifier

BPF bytecode: ; bpf_reg_state[]:

; r0 points to s ; r0 map_value, off=0, vs=1032

r1 = *(u8*)(r0 + offsetof(s, index)) ; r1 umax_value=255,
     var_off=(0x0; 0xff)
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     var_off=(0x0; 0xffffffff)

r0 += offsetof(s, array) ; r0 map_value, off=8, vs=1032
r1 *= sizeof(int32_t) ; r1 umax_value=1020,

     var_off=(0x0; 0x3fc)
r0 += r1 ; r0 map_value, off=8, vs=1032,

     umax_value=1020,
     var_off=(0x0; 0x3fc)



BPF Verifier

BPF bytecode: ; bpf_reg_state[]:

; r0 points to s ; r0 map_value, off=0, vs=1032

r1 = *(u8*)(r0 + offsetof(s, index)) ; r1 umax_value=255,
     var_off=(0x0; 0xff)
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; simplifies BPF verifier



BPF Verifier

BPF bytecode: ; bpf_reg_state[]:

; r0 points to s ; r0 map_value, off=0, vs=1032

r1 = *(u8*)(r0 + offsetof(s, index)) ; r1 umax_value=255,
     var_off=(0x0; 0xff)

r2 = *(u32*)(r0 + offsetof(s, value)) ; r2 umax_value=4294967295,
     var_off=(0x0; 0xffffffff)

r0 += offsetof(s, array) ; r0 map_value, off=8, vs=1032
r1 *= sizeof(int32_t) ; r1 umax_value=1020,

     var_off=(0x0; 0x3fc)
r0 += r1 ; r0 map_value, off=8, vs=1032,

     umax_value=1020,
     var_off=(0x0; 0x3fc)

r2 = -r2 ; r2 [NO CONSTRAINTS]
*(u32*)(r0) = r2

; safe for all simulated r0 values



BPF Verifier

Challenges

➔ Attractive target for exploitation when exposed to non-root
◆ Growing verifier complexity
◆ Programmability can be abused to bypass mitigations once in OS kernel

➔ Reasoning about verifier correctness is non-trivial
◆ Especially Spectre mitigations
◆ Only partial formal verification (e.g. tnums, JITs)

➔ Occasions where valid programs get rejected
◆ LLVM vs verifier “disconnect” to understand optimizations
◆ Restrictions when tracking state

➔ “Stable ABI” for BPF program types (with some limitations)
◆ BPF programs in production should not break upon OS kernel upgrade

➔ Performance vs security considerations
◆ Verification of complex programs must be efficient to be practical
◆ Mitigations must be practical as performance of programs crucial



BPF Verifier

Challenges (cont)

➔ Allowing both 32-bit and 64-bit operations in BPF programs contributes to complexity
➔ Under active development to support new BPF features



Speculative Execution

“Iron Law” of processor performance

 

[ Krste Asanovic, CS152, 2009 ]

program source code

compiler technology

instruction set architecture (ISA)

microarchitecture

fabrication technology

https://inst.eecs.berkeley.edu/~cs152/sp09/lectures/L04-Pipelining.pdf


Speculative Execution

Microarchitecture optimizations contributed significantly to performance gains

[ Sutter, The Free Lunch Is Over, 2009 ]

Contribution from 
microarchitectural 
improvements

http://www.gotw.ca/publications/concurrency-ddj.htm


Speculative Execution

Microarchitecture optimizations example

➔ Exploit Instruction-Level Parallelism by executing independent instructions in parallel
➔ Or even out-of-order based on input data and hardware resources availability

Modern hardware implements variants of Tomasulo's algorithm (1967)

➔ Allows for multiple in-flight instructions
➔ Instruction dependencies tracked using “data flow” graph

r4 = r1 op r2
r5 = r2 op r3
r6 = [r5] ; memory load can be slow
r7 = r6 op r4 ; waits for r6
r8 = r3 op r4 ; could execute in the meantime

➔ Executes instructions once dependencies are ready, perhaps out-of-order
➔ Commits results in program order to maintain illusion of sequential execution



Speculative Execution

Parallel execution challenges relevant to our work

➔ Control dependencies
➔ Ambiguous memory dependencies

Control dependencies

➔ Conditional and indirect branch instructions occur frequently in typical programs
➔ However branch outcomes are predictable with high accuracy
➔ Rollback on misprediction
➔ Universally exploited to significantly increase gains from parallel execution

Ambiguous memory dependencies

➔ Load depends on preceding store only when accessing the same memory location
➔ Resolved after memory addresses become available
➔ However indirect addressing is very common and may delay disambiguation



Speculative Execution

Speculative memory disambiguation

➔ Ambiguous memory dependency example

r11 = [r10] ; memory load can be slow
[r11] = r12 ; waits for r11
r4 = r1 op r2
r5 = r2 op r3
r6 = [r5] ; execute in the meantime?

➔ Speculatively proceed with load assuming r5 != r11
➔ Rollback, including dependencies, if wrong

Memory disambiguation on Intel microprocessors

➔ Speculation techniques described in “Intel® 64 and IA-32 Architectures Optimization 
Reference Manual”

➔ Testing indicates that speculation is enabled via predictor (no official documentation)

https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html


Speculative Execution

Rollback on misspredition is limited to architectural (visible) state

➔ Not practical to extend to microarchitectural state, e.g. predictors that depend on past 
behaviour

How to abuse: Speculative Store Bypass (SSB)

1. Train memory disambiguator
2. Speculatively execute unsafe load
3. Modify microarchitectural state under speculation
4. Extract information via side channel



Speculative Execution

Disable speculation at the cost of CPU performance?

➔ Hardware vendors provide mechanism
➔ Software developers to make the choice



Speculative Execution

Speculative Store Bypass (SSB) mitigations

➔ lfence instruction (x86)
◆ Stops younger instructions from executing until all store addresses are resolved

➔ CPU configuration registers



Speculative Execution

Common patterns in speculative-execution vulnerabilities

➔ Hardware relies on probabilistic methods to break dependencies
◆ Required to maximise performance

➔ Microarchitectural state affected at least to track prediction accuracy
◆ Not fixable

➔ Side-channel to extract microarchitectural state
◆ Variety of high-resolution times available



Speculative Execution

Hardware vendors continue to innovate to extract parallelism

➔ “Security analysis of AMD predictive store forwarding” (AMD, March 2021)

Software needs to accommodate

https://www.amd.com/system/files/documents/security-analysis-predictive-store-forwarding.pdf


µarch is the way a given ISA like x86 is implemented

➔ Can vary due to different optimization goals or                                                        
technology shifts

➔ µarchitectural concepts include:

Side-Channels

Branch prediction
Out-of-order execution
Speculative execution
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Predicts outcome and target of 
branches before they are known
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➔ Can vary due to different optimization goals or                                                        
technology shifts

➔ µarchitectural concepts include:

Side-Channels

Branch prediction
Out-of-order execution
Speculative execution

Avoids pipeline stalls due to 
waiting on data being fetched 
from memory
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µarch is the way a given ISA like x86 is implemented

➔ Can vary due to different optimization goals or                                                        
technology shifts

➔ µarchitectural concepts include:

Side-Channels

Branch prediction
Out-of-order execution
Speculative execution Continues execution of instruction 

with predicted outcome.

➔ If prediction true: predicted 
execution is allowed to commit

➔ If prediction false: execution has 
to be unrolled and re-executed

Rollback on misspeculation:

➔ Old register states preserved → restored
➔ Memory writes are buffered → discarded
➔ Cache modifications → not restored

“Transient instructions”

observable 
side-effect!



Covertly leaking data from transient instructions: caches as side-channels

Side-Channels

Short primer on caches:

➔ Provide faster access to frequently                                          
used data (the closer to the core, the                                      
less time required to load data)

➔ Difference in access time can be                                     
measured by software

➔ Possible to determine whether an                                     
address is cached
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Covertly leaking data from transient instructions: caches as side-channels

Side-Channels

Short primer on caches:

➔ Provide faster access to frequently                                          
used data (the closer to the core, the                                      less 
time required to load data)

➔ Difference in access time can be                                     
measured by software

➔ Possible to determine whether an                                     
address is cached

L1 data cache: 32KB, fastest latency: 4 cycles

L2 cache: 256KB, fastest latency: 12 cycles

L3 cache: 8MB, shared, fastest latency: 38 cycles

cache-line size: 64B

time = rdtsc();
mem_access(&data[0x100]);
delta = rdtsc() - time;

1 Bit signal for side-channel:

time delta low:    in cache
time delta high:   not in cache

(can then be compared to known ‘in cache’/’not in cache’ timings)



Covertly leaking example via BPF (principal is same for different Spectre attacks):

Side-Channels

‘Leaker’ BPF prog:

u8  value = *(u8 *)ptr;
u32 index = (((value >> bit) & 1) * 0x100) + 0x200; 
mem_access(&map_value[index]);

Non-speculative domain: points to e.g. BPF map value
Under speculation: points to attacker controlled address

Examples shown later on how this can be triggered.



Covertly leaking example via BPF (principal is same for different Spectre attacks):

Side-Channels

‘Leaker’ BPF prog:

u8  value = *(u8 *)ptr;
u32 index = (((value >> bit) & 1) * 0x100) + 0x200; 
mem_access(&map_value[index]);

Shift to bit-position to extract individual bits



Covertly leaking example via BPF (principal is same for different Spectre attacks):

Side-Channels

‘Leaker’ BPF prog:

u8  value = *(u8 *)ptr;
u32 index = (((value >> bit) & 1) * 0x100) + 0x200; 
mem_access(&map_value[index]);

Resulting index becomes either:
➔ 0 * 0x100 + 0x200 = 0x200
➔ 1 * 0x100 + 0x200 = 0x300



Covertly leaking example via BPF (principal is same for different Spectre attacks):

Side-Channels

‘Leaker’ BPF prog:

u8  value = *(u8 *)ptr;
u32 index = (((value >> bit) & 1) * 0x100) + 0x200; 
mem_access(&map_value[index]);

Access address at valid BPF map:
➔ map_value[0x200]
➔ map_value[0x300]



Covertly leaking example via BPF (principal is same for different Spectre attacks):

Side-Channels

‘Leaker’ BPF prog:

u8  value = *(u8 *)ptr;
u32 index = (((value >> bit) & 1) * 0x100) + 0x200; 
mem_access(&map_value[index]);

Access address at valid BPF map:
➔ map_value[0x200]
➔ map_value[0x300]

‘Reader’ BPF prog:

time = ktime_get_ns();
mem_access(&map_value[index]);
delta = ktime_get_ns() - time;
// store delta in different BPF map



Covertly leaking example via BPF (principal is same for different Spectre attacks):

Side-Channels

‘Leaker’ BPF prog:

u8  value = *(u8 *)ptr;
u32 index = (((value >> bit) & 1) * 0x100) + 0x200; 
mem_access(&map_value[index]);

Access address at valid BPF map:
➔ map_value[0x200]
➔ map_value[0x300]

‘Reader’ BPF prog:

time = ktime_get_ns();
mem_access(&map_value[index]);
delta = ktime_get_ns() - time;
// store delta in different BPF map

Example timing:
➔ map_value[0x200]: ‘in cache’
➔ map_value[0x300]: ‘not in cache’

value (8 bits)

0 ? ? ? ? ? ? ?



Covertly leaking example via BPF (principal is same for different Spectre attacks):

Side-Channels

‘Leaker’ BPF prog:

u8  value = *(u8 *)ptr;
u32 index = (((value >> bit) & 1) * 0x100) + 0x200; 
mem_access(&map_value[index]);

Access address at valid BPF map:
➔ map_value[0x200]
➔ map_value[0x300]

‘Reader’ BPF prog:

time = ktime_get_ns();
mem_access(&map_value[index]);
delta = ktime_get_ns() - time;
// store delta in different BPF map

Example timing:
➔ map_value[0x200]: ‘in cache’
➔ map_value[0x300]: ‘not in cache’

value (8 bits)

0 0 ? ? ? ? ? ?



Covertly leaking example via BPF (principal is same for different Spectre attacks):

Side-Channels

‘Leaker’ BPF prog:

u8  value = *(u8 *)ptr;
u32 index = (((value >> bit) & 1) * 0x100) + 0x200; 
mem_access(&map_value[index]);

Access address at valid BPF map:
➔ map_value[0x200]
➔ map_value[0x300]

‘Reader’ BPF prog:

time = ktime_get_ns();
mem_access(&map_value[index]);
delta = ktime_get_ns() - time;
// store delta in different BPF map

Example timing:
➔ map_value[0x200]: ‘not in cache’
➔ map_value[0x300]: ‘in cache’

value (8 bits)

0 0 1 ? ? ? ? ?

(between runs needs 
to bounce cachelines, 
so both slots are ‘not in 
cache’)



Generally any runtime affected, not just BPF, given these are hardware bugs

➔ Not triggered by software bugs whatsoever
➔ Execution without speculation is safe

Spectre: injecting misspeculation to then covertly leak data via side-channel

➔ Different attacks to trigger misspeculation

Microarchitecture & Spectre



Generally any runtime affected, not just BPF, given these are hardware bugs

➔ Not triggered by software bugs whatsoever
➔ Execution without speculation is safe

Spectre: injecting misspeculation to then covertly leak data via side-channel

➔ Different attacks to trigger misspeculation

Example attacks and mitigations shown for BPF runtime

➔ Disclaimer: not able to cover every aspect due to time limit
➔ Focus on Spectre v1/v2/v4
➔ Relation to process capabilities

Microarchitecture & Spectre



Bounds Check Bypass to gain memory out-of-bounds access under speculation

➔ CPU reduces perf penalty by predicting outcome of branches

BPF & Spectre v1

➔ Typically implemented as Pattern History Table (PHT)
➔ Predicts outcome of branch taken/not taken
➔ Expected to be sometimes wrong (example: induction 

variable in loop)
➔ PC indexed via partial virtual address (e.g. lower bits)
➔ Subject to aliasing/interference, see P versus Q

(Image from https://arxiv.org/pdf/1804.00261.pdf)

Attack injects misspeculation to array bounds check. Then 
leaks data when out-of-bounds.

if (x < *array_max) {
    val = array[x];
    // leak val (as shown earlier)
}

array_max not in cache
(condition mispredicted to be 
in-bounds)



Example attack in BPF, 1: load slowly-loaded value and turn into constant

BPF & Spectre v1

// r0 = pointer to a map array entry
// r7 = pointer to a map array entry
r4 = r10
r4 += -1
*(u8 *)(r4 -511) = 0
r2 = *(u64 *)(r7 +8)
r3 = *(u64 *)(r0 +4608)
r3 &= 1
r3 &= 2
r3 -= 511
if r2 != r3 goto pc+7
r4 += r2
r4 = *(u8 *)(r4 +0)
// leak r4

Inits stack slot to 0

Loads OOB address

Loads uncached bound and 
turns it into a slow constant

Mispredicts condition 
and loads OOB address

Without CPU speculation: 
Reads back stack slot



Example attack in BPF, 1: load slowly-loaded value and turn into constant

BPF & Spectre v1

// r0 = pointer to a map array entry
// r7 = pointer to a map array entry
r4 = r10
r4 += -1
*(u8 *)(r4 -511) = 0
r2 = *(u64 *)(r7 +8)
r3 = *(u64 *)(r0 +4608)
r3 &= 1
r3 &= 2
r3 -= 511
if r2 != r3 goto pc+7
r4 += r2
r4 = *(u8 *)(r4 +0)
// leak r4

Inits stack slot to 0

Loads OOB address

Loads uncached bound and 
turns it into a slow constant

Mispredicts condition 
and loads OOB address

// r0 = pointer to a map array entry
// r7 = pointer to a map array entry
r4 = r10
r4 += -1
*(u8 *)(r4 -511) = 0
r2 = *(u64 *)(r7 +8)
r3 = *(u64 *)(r0 +4608)
r3 &= 1
r3 &= 2
r3 -= 511
if r2 != r3 goto pc+7
w11 = 511
r4 -= r11
r4 = *(u8 *)(r4 +0)
// leak r4

Mitigated by BPF verifier:

Nothing to speculate 
anymore! (r11 is 
hidden auxiliary register)

rewrites pointer
arithmetic

observed that
r3 is constant!



Two mitigation approaches performed by BPF verifier

➔ Eliminate speculation if possible by rewrite with constants
➔ Safely redirect speculation to be within array bounds

BPF & Spectre v1

// r2 = unknown but in [0,32]
r4 += r2
r4 = *(u8 *)(r4 +0)
// leak r4

What if offset is not known?

// r2 = unknown but in [0,32]
w11 = 32
r11 -= r2
r11 |= r2
r11 = -r11
r11 s>>= 63
r11 &= r2
r4 += r11
r4 = *(u8 *)(r4 +0)
// leak r4

Redirected speculation:
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➔ Eliminate speculation if possible by rewrite with constants
➔ Safely redirect speculation to be within array bounds
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// r2 = unknown but in [0,32]
w11 = 32
r11 -= r2
r11 |= r2
r11 = -r11
r11 s>>= 63
r11 &= r2
r4 += r11
r4 = *(u8 *)(r4 +0)
// leak r4

Redirected speculation: Example r2 speculation:   31 (0x1F)
max value:          32 (0x20)

r2 speculation:   34 (0x22)
max value:          32 (0x20)

w11 = 32 0000000000000020

r11 -= r2 0000000000000001

r11 |= r2 000000000000001f

r11 = -r11 ffffffffffffffe1

r11 s>>= 63 ffffffffffffffff

r11 &= r2 000000000000001f

r4 += r11 ➔ r4 += 31

offset is “in- 
bounds”
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Two mitigation approaches performed by BPF verifier

➔ Eliminate speculation if possible by rewrite with constants
➔ Safely redirect speculation to be within array bounds

BPF & Spectre v1

// r2 = unknown but in [0,32]
w11 = 32
r11 -= r2
r11 |= r2
r11 = -r11
r11 s>>= 63
r11 &= r2
r4 += r11
r4 = *(u8 *)(r4 +0)
// leak r4

Redirected speculation: Example r2 speculation:   31 (0x1F)
max value:          32 (0x20)

r2 speculation:   34 (0x22)
max value:          32 (0x20)

w11 = 32 0000000000000020 0000000000000020

r11 -= r2 0000000000000001 fffffffffffffffe

r11 |= r2 000000000000001f fffffffffffffffe

r11 = -r11 ffffffffffffffe1 0000000000000002

r11 s>>= 63 ffffffffffffffff 0000000000000000

r11 &= r2 000000000000001f 0000000000000000

r4 += r11 ➔ r4 += 31 ➔ r4 += 0

offset is “in- 
bounds”

offset is “out-of- 
bounds”

Speculation is “redirected” 
branchless to be “in-bounds”



Two mitigation approaches performed by BPF verifier

➔ Eliminate speculation if possible by rewrite with constants
➔ Safely redirect speculation to be within array bounds

BPF & Spectre v1

// r2 = unknown but in [0,32]
r4 += r2
r4 = *(u8 *)(r4 +0)
// leak r4

What if offset is not known? Steps done by BPF verifier:

➔ Observes pointer move, derives max register offset/limit
➔ Spawns a new verification path to simulate program 

under truncation (r4 += 0 case)
➔ Rewrites pointer arithmetic with masking



Example attack in BPF, 2:  pointer type confusion under speculation

BPF & Spectre v1

// r0 = pointer to a map array entry
// r6 = pointer to readable stack slot
// r9 = scalar controlled by attacker

1: r0 = *(u64 *)(r0)  
2: if r0 != 0x0 goto line 4
3: r6 = r9
4: if r0 != 0x1 goto line 6
5: r9 = *(u8 *)(r6)
6: // leak r9

Can BPF verifier conclude that this is safe?

Mutually exclusive paths
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// ...
// r6 = pointer to readable stack slot
// r9 = scalar controlled by attacker

1: ...
2: ...
3: r6 = r9
4: ...
5: r9 = *(u8 *)(r6)
6: // leak r9

No! Under misspeculation this can be executed:

cache-miss



Example attack in BPF, 2:  pointer type confusion under speculation

BPF & Spectre v1

// r0 = pointer to a map array entry
// r6 = pointer to readable stack slot
// r9 = scalar controlled by attacker

1: r0 = *(u64 *)(r0) 
2: if r0 != 0x0 goto line 4
3: r6 = r9
4: if r0 != 0x1 goto line 6
5: r9 = *(u8 *)(r6)
6: // leak r9

Can BPF verifier conclude that this is safe?

// ...
// r6 = pointer to readable stack slot
// r9 = scalar controlled by attacker

1: ...
2: ...
3: r6 = r9
4: ...
5: r9 = *(u8 *)(r6)
6: // leak r9

No! Under misspeculation this can be executed:

cache-miss

See earlier ‘P versus Q’ aliasing/interference:

Attacker trains branch predictor from user space 
at ‘colliding’ indices in PHT, both as: not taken



Mitigation approach performed by BPF verifier

➔ Verify ‘impossible’ paths for safety that can be reached from speculation

BPF & Spectre v1

Steps done by BPF verifier:

➔ Spawns a new verification path to simulate 
unreachable paths from non-speculative domain

➔ Verifier ensures that program paths from speculative 
domain do not prune non-speculative ones

➔ Rejects program when e.g. type confusion observed

// ...
// r6 = pointer to readable stack slot
// r9 = scalar controlled by attacker

1: ...
2: ...
3: r6 = r9
4: ...
5: r9 = *(u8 *)(r6)
6: // leak r9

No! Under misspeculation this can be executed:



Branch Target Buffer (BTB) reduces perf penalty by predicting path of branches

BPF & Spectre v2

(Image from original Intel patent)

➔ Predicts address of next instruction fetch before it is 
actually computed by the execution unit

➔ Look up on current PC to gather predicted target PC
➔ Expected to be sometimes wrong
➔ PC indexed via partial virtual address (e.g. lower bits)

Attack injects misspeculation to controlled addresses across 
security domains. Jump to ‘gadget’ code for leaking data.

0x1234 target PC from A 0x1234 target PC from B

Process A (attacker) Process B or Kernel / Hypervisor

0x1234 predicted PC stateBTB



How is BPF affected? Everything that is having indirect calls.

➔ Example 1: Indirect calls inside helpers or first entry into the BPF program itself

➔ Example 2: BPF tail calls used in BPF code

BPF & Spectre v2

static inline int parse_eth_proto(struct __sk_buff *skb, __u16 proto)
{

bpf_tail_call(skb, &jmp_table, proto);
return 0;

}

BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
      void *, value, u64, flags)

{
return map->ops->map_update_elem(map, key, value, flags);

}

Dispatches into 
underlying BPF map 
implementation, e.g. 
array, hash, LRU, LPM, ...

Based on dynamic target 
index for BPF tail call 
map, it continues 
execution on target prog

(Not covered in this talk, see appendix.)



BPF tail calls: How do they work internally? Think of execv(3) ...

BPF & Spectre v2

// R1: pointer to ctx
// R2: pointer to array (tail call map)
// R3: index

if (unlikely(index >= array->map.max_entries))
goto next_insn;

if (unlikely(tail_call_cnt >= MAX_TAIL_CALLS))
goto next_insn;

tail_call_cnt++;

prog = READ_ONCE(array->ptrs[index]);
if (!prog)

goto next_insn;

insn = prog->insnsi;
goto next_insn;

33: cmp    %edx,0x24(%rsi)
36: jbe    0x63 
38: mov    0x24(%rbp),%eax
3e: cmp    $0x20,%eax   ; 0x20: MAX_TAIL_CALLS
41: ja     0x63 
43: add    $0x1,%eax
46: mov    %eax,0x24(%rbp)
4c: mov    0x90(%rsi,%rdx,8),%rax   ; get prog
54: test   %rax,%rax
57: je     0x63 
59: mov    0x28(%rax),%rax
5d: add    $0x25,%rax        ; offset to entry
61: jmpq   *%rax             ; indirect jump
63: // fallthrough path

Interpreter JITed

Subject to misspeculation!



JIT mitigation, part 1: retpoline (return trampoline) to trap speculation in loop

BPF & Spectre v2

[...]
4c: mov    0x90(%rsi,%rdx,8),%rax   ; get prog
54: test   %rax,%rax
57: je     0x63 
59: mov    0x28(%rax),%rax
5d: add    $0x25,%rax        ; offset to entry
61: jmpq   *%rax             ; indirect jump
63: // fallthrough path

JITed, unprotected

[...]
4c: mov    0x90(%rsi,%rdx,8),%rax   ; get prog
54: test   %rax,%rax
57: je     0x72 
59: mov    0x28(%rax),%rax
5d: add    $0x25,%rax        ; offset to entry
61: callq  0x6d              ; 61-71: retpoline
66: pause                      
68: lfence                     
6b: jmp    0x66
6d: mov    %rax,(%rsp)       
71: retq   
72: // fallthrough path

JITed, w/ mitigation

Modifies return stack to 
force “return” to target.

Capturing CPU 
speculation in loop.

pause: to relinquish pipeline resources
lfence: as speculation barrier
i.e. both stop CPU from wasting power/time

https://support.google.com/faqs/answer/7625886


JIT mitigation/optimization, part 2: remove possibility to speculate via direct call

BPF & Spectre v2

[...]
4c: mov    0x90(%rsi,%rdx,8),%rax   ; get prog
54: test   %rax,%rax
57: je     0x72 
59: mov    0x28(%rax),%rax
5d: add    $0x25,%rax        ; offset to entry
61: callq  0x6d              ; 61-71: retpoline
66: pause                      
68: lfence                     
6b: jmp    0x66
6d: mov    %rax,(%rsp)       
71: retq   
72: // fallthrough path

JITed, w/ retpoline

[...]
4c: nopl   0x0(%rax,%rax,1)
51: // fallthrough path

JITed, w/ direct call: no prog in map

Plain nop to force fall-through.



JIT mitigation/optimization, part 2: remove possibility to speculate via direct call

➔ Possible if map & key is constant, that is, not dynamic & same from different paths
➔ Update on map triggers image update
➔ Transitions: nop→jmp (insertion), jmp→nop (deletion), jmp→jmp (update)
➔ Otherwise if preconditions not satisfied: emission of retpoline

BPF & Spectre v2

[...]
4c: jmpq   0xffffffffffb09f55
51: // fallthrough path

JITed, w/ direct call: prog is in map

Plain direct jump to target.

[...]
4c: nopl   0x0(%rax,%rax,1)
51: // fallthrough path

JITed, w/ direct call: no prog in map

Plain nop to force fall-through.

Rewrite transition via text_poke_bp().



libbpf: small helper for BPF program authors called bpf_tail_call_static()

➔ Performance studies (here & here): cost of one tail call drops more than half

BPF & Spectre v2

static inline void bpf_tail_call_static(void *ctx, const void *map, const __u32 slot)
{

if (!__builtin_constant_p(slot))
__bpf_unreachable(); // force compilation error if it gets built-in

asm volatile("r1 = %[ctx]\n\t"
       "r2 = %[map]\n\t"
       "r3 = %[slot]\n\t"
       "call 12"
       :: [ctx]"r"(ctx), [map]"r"(map), [slot]"i"(slot)
       : "r0", "r1", "r2", "r3", "r4", "r5");

}

Given map & slot does not change, allows for 
direct jmp/nop transition in JIT.

https://pchaigno.github.io/ebpf/2021/03/22/cost-bpf-tail-calls.html
https://linuxplumbersconf.org/event/7/contributions/676/


Memory disambiguator: memory dependence speculation

➔ Given OOO instruction execution, it predicts whether load depends on earlier store

BPF & Spectre v4

➔ Ambiguous dependency also forces “sequentiality”
➔ To increase CPU’s instruction level parallelism, it needs 

disambiguation mechanisms that are either safe or 
recoverable (from speculation)

➔ Dependency prediction expected to be sometimes wrong

Attack (Speculative Store Bypass) triggers misspeculation so 
that memory load executes ahead of dependant older store. A 
‘gadget’ code can read stale data and utilize it for leaking.

(Do all these point to the same memory location?)



Memory disambiguator: memory dependence speculation

➔ Given OOO instruction execution, it predicts whether load depends on earlier store

BPF & Spectre v4

➔ Ambiguous dependency also forces “sequentiality”
➔ To increase CPU’s instruction level parallelism, it needs 

disambiguation mechanisms that are either safe or 
recoverable (from speculation)

➔ Dependency prediction expected to be sometimes wrong

Attack (Speculative Store Bypass) triggers misspeculation so 
that memory load executes ahead of dependant older store. A 
‘gadget’ code can read stale data and utilize it for leaking.

(Do all these point to the same memory location?)

1: store pointer_A to [mem]

N: store pointer_B to [mem]

N+1: load from [mem]

1: store pointer_A to [mem]

N: store pointer_B to [mem]

N+1: load from [mem]

(dependency misspeculation → unsafe reordering)

“high-latency” store
([mem] destination address 

calculation not done yet)

“low-latency” read



Example attack in BPF: crafting ‘fast’ versus ‘slow’ registers

BPF & Spectre v4

// r2 = scalar controlled by attacker
// r7 = pointer to map value

*(u64 *)(r10 -16) = r2
r9 = r10
// train memory disambiguator
[REMOVED FOR BREVITY]
r1 = map[id:4]
r2 = r7
r3 = 0
r4 = 4
call bpf_ringbuf_output#194288
*(u64 *)(r10 -16) = r7
r2 = *(u64 *)(r9 -16)
r3 = *(u8 *)(r2 +0)
// leak r3

Dummy call to BPF helper

Without CPU speculation: 
Loads safe map value (r7)

Spills valid map value 
pointer to stack

Loads stale value (scalar) 
and uses as OOB address

r9 == r10, equal stack pointers

Stores arbitrary scalar on the stack

Unrolled memory copy
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// r2 = scalar controlled by attacker
// r7 = pointer to map value

*(u64 *)(r10 -16) = r2
r9 = r10
// train memory disambiguator
[REMOVED FOR BREVITY]
r1 = map[id:4]
r2 = r7
r3 = 0
r4 = 4
call bpf_ringbuf_output#194288
*(u64 *)(r10 -16) = r7
r2 = *(u64 *)(r9 -16)
r3 = *(u8 *)(r2 +0)
// leak r3

Dummy call to BPF helper

Without CPU speculation: 
Loads safe map value (r7)

Spills valid map value 
pointer to stack

Loads stale value (scalar) 
and uses as OOB address

r9 == r10, equal stack pointers

Stores arbitrary scalar on the stack

Unrolled memory copy

But why we 
speculate?

bpf_ringbuf_output() helper code:

➔ Internally pushes & pops register r10 to stack (due to calling convention)
➔ While r9 stays in CPU hardware register
➔ Given the pop latency, value of r10 not available immediately on return

Hardware executes speculative loads while store waits for r10



Example attack in BPF: saturating “Store Address” ports

BPF & Spectre v4

// r2 = scalar controlled by attacker
// r7 = pointer to map value

// train memory disambiguator
[REMOVED FOR BREVITY]
*(u64 *)(r10 -16) = r2
*(u32 *)(r7 +29696) = r0
...
*(u32 *)(r7 +29812) = r0
*(u64 *)(r10 -16) = 0  // legacy Spectre v4 migitation
*(u64 *)(r10 -16) = r7
r2 = *(u64 *)(r10 -16)
r3 = *(u8 *)(r2 +0)
// leak r3

Roughly 30 stores

Without CPU speculation: 
Loads safe map value (r7)

Spills valid map value 
pointer to stack

Loads stale value (scalar) 
and uses as OOB address

Stores arbitrary scalar on the stack

Unrolled memory copy
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Example attack in BPF: saturating “Store Address” ports

➔ How hardware executes
loads and stores?

BPF & Spectre v4

[ Intel, 2021 ]

https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html


Example attack in BPF: saturating “Store Address” ports

➔ Dedicated (separate) ports to execute loads and compute store addresses

BPF & Spectre v4

[ Intel, 2021 ]

https://www.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html


Example attack in BPF: saturating “Store Address” ports

BPF & Spectre v4

Scheduler

store data µOP

…

store address µOP

store data µOP

store address µOP

store data µOP

store address µOP

Store Address

Port 8

Port 7

Store Data

Port 9

Port 4

Load

Port 3

Port 2

executing

waiting for 
available port



Example attack in BPF: saturating “Store Address” ports

BPF & Spectre v4

Scheduler

load µOP

load µOP

store data µOP

store address µOP

store data µOP

…

store address µOP

store data µOP

store address µOP

store data µOP

store address µOP

Store Address

Port 8

Port 7

Store Data

Port 9

Port 4

Load

Port 3

Port 2

completed

executing



Example attack in BPF: saturating “Store Address” ports

BPF & Spectre v4

Scheduler

load µOP

load µOP

store data µOP

store address µOP

store data µOP

…

store address µOP

store data µOP

store address µOP

store data µOP

store address µOP

Store Address

Port 8

Port 7

Store Data

Port 9

Port 4

Load

Port 3

Port 2

completed

bypassed while waiting 
for available port

allowed to complete by 
memory disambiguator



Mitigation: emission of lfence instruction by BPF verifier as speculation barrier

BPF & Spectre v4

Steps done by BPF verifier:

➔ Observes pointer spill/fills to BPF stack
➔ Observes ‘first-use’ of BPF stack slots (data or pointers)
➔ Inserts nospec BPF instruction after store
➔ JIT backends like x86 translate to lfence
➔ Now subsequent load cannot overtake anymore

...
*(u64 *)(r10 -16) = r7
nospec
r2 = *(u64 *)(r10 -16)
r3 = *(u8 *)(r2 +0)
// r3 leak mitigated

Mitigated version:



Privileged BPF (CAP_BPF & CAP_PERFMON), e.g. used for tracing:

➔ Programs have v2 mitigations enabled as aligned with rest of kernel
➔ Performance impact low given retpoline-avoidance optimizations
➔ Generally little practical impact for vast majority of BPF projects

Unprivileged BPF (no CAPs) if available/enabled1, e.g. reuseport programs:

➔ Programs have all v1/v2/v4 mitigations transparently enabled
➔ Performance impact low-medium depending on v2/v4 mitigations involved

Relation to Process Capabilities

1: Unprivileged BPF is off by default, see also /proc/sys/kernel/unprivileged_bpf_disabled and BPF_UNPRIV_DEFAULT_OFF kernel config 
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BPF runtime transparently applies Spectre v1/v2/v4 mitigations

➔ Mitigations like masking harden the code also for non-Spectre attacks
➔ They are applied in addition to the mitigations enforced by the kernel

BPF verifier performing deeper static analysis than compilers

➔ Spawns program path analysis also under speculative execution

BPF verifier also eliminates speculation possibilities for v1/v2 where possible

➔ Pointer ALU rewrites with constant offsets instead of register-based offsets
➔ Transforms indirect jumps into direct jumps where retpolines can be avoided

BPF verifier applies mitigations for v4 only when necessary

➔ Pointer spill/fill to BPF stack (e.g. under register pressure from LLVM side)
➔ Initial BPF stack usage to prevent read of prior stack data

tlr;dr Summary



Core BPF is not perfect in terms of verifiability

➔ Only few constructs have been formally verified so far
◆ However, research around BPF from academic community increasing

➔ Some operations, i.e. division on tnums, are not range tracked

Recently published work improves the multiplication range tracking [1]

➔ tnum multiplication now maintains more precise information
➔ Addition, subtraction, multiplication algorithm was formally proved

Document/formalize the current verification procedure

➔ Not much documentation how the verifier operates internally except for the source
➔ Challenging to get an overview of the verification structure from C code

Future Work

https://arxiv.org/abs/2105.05398


Jann Horn (Google, Project Zero)

Adam Morrison (Tel Aviv University)

John Fastabend (Isovalent)

Alexei Starovoitov (Facebook)

… and whole BPF, netdev &                  
….security research community!

(Appendix #1: Extract of BPF-related commits for more details on mitigation work,          
.Appendix #2: Extract of academic research related to BPF)

Thank you!



b2157399cc98 (“bpf: prevent out-of-bounds speculation”)

be95a845cc44 (“bpf: avoid false sharing of map refcount with max_entries”)

c93552c443eb (“bpf: properly enforce index mask to prevent out-of-bounds speculation”)

979d63d50c0c (“bpf: prevent out of bounds speculation on pointer arithmetic”)

d3bd7413e0ca (“bpf: fix sanitation of alu op with pointer / scalar type from different paths”)

9d5564ddcf2a (“bpf: fix inner map masking to prevent oob under speculation”)

3612af783cf5 (“bpf: fix sanitation rewrite in case of non-pointers”)

f232326f6966 (“bpf: Prohibit alu ops for pointer types not defining ptr_limit”)

10d2bb2e6b1d (“bpf: Fix off-by-one for area size in creating mask to left”)

7fedb63a8307 (“bpf: Tighten speculative pointer arithmetic mask”)

b9b34ddbe207 (“bpf: Fix masking negation logic upon negative dst register”)

801c6058d14a (“bpf: Fix leakage of uninitialized bpf stack under speculation”)

bb01a1bba579 (“bpf: Fix mask direction swap upon off reg sign change”)

Appendix: Spectre v1 & BPF work (extract)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b2157399cc9898260d6031c5bfe45fe137c1fbe7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=be95a845cc4402272994ce290e3ad928aff06cb9
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c93552c443ebc63b14e26e46d2e76941c88e0d71
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=979d63d50c0c0f7bc537bf821e056cc9fe5abd38
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d3bd7413e0ca40b60cf60d4003246d067cafdeda
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9d5564ddcf2a0f5ba3fa1c3a1f8a1b59ad309553
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3612af783cf52c74a031a2f11b82247b2599d3cd
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f232326f6966cf2a1d1db7bc917a4ce5f9f55f76
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=10d2bb2e6b1d8c4576c56a748f697dbeb8388899
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7fedb63a8307dda0ec3b8969a3b233a1dd7ea8e0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b9b34ddbe2076ade359cd5ce7537d5ed019e9807
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=801c6058d14a82179a7ee17a4b532cac6fad067f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bb01a1bba579b4b1c5566af24d95f1767859771e


a7036191277f (“bpf: No need to simulate speculative domain for immediates”)

fe9a5ca7e370 (“bpf: Do not mark insn as seen under speculative path verification”)

9183671af6db (“bpf: Fix leakage under speculation on mispredicted branches”)

e042aa532c84 (“bpf: Fix pointer arithmetic mask tightening under state pruning”)

Appendix: Spectre v1 & BPF work (extract /2)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a7036191277f9fa68d92f2071ddc38c09b1e5ee5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fe9a5ca7e370e613a9a75a13008a3845ea759d6e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9183671af6dbf60a1219371d4ed73e23f43b49db
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e042aa532c84d18ff13291d00620502ce7a38dda


290af86629b2 (“bpf: introduce BPF_JIT_ALWAYS_ON config”)

a493a87f38cf (“bpf, x64: implement retpoline for tail call”)

ce02ef06fcf7 (“x86, retpolines: Raise limit for generating indirect calls from switch-case”)

a9d57ef15cbe (“x86/retpolines: Disable switch jump tables when retpolines are enabled”)

09772d92cd5a (“bpf: avoid retpoline for lookup/update/delete calls on maps”)

81c22041d9f1 (“bpf, x86, arm64: Enable jit by default when not built as always-on”)

da765a2f5993 (“bpf: Add poke dependency tracking for prog array maps”)

d2e4c1e6c294 (“bpf: Constant map key tracking for prog array pokes”)

428d5df1fa4f (“bpf, x86: Emit patchable direct jump as tail call”)

cc52d9140aa9 (“bpf: Fix record_func_key to perform backtracking on r3”)

75ccbef6369e (“bpf: Introduce BPF dispatcher”)

7e6897f95935 (“bpf, xdp: Start using the BPF dispatcher for XDP”)

0e9f6841f664 (“bpf, libbpf: Add bpf_tail_call_static helper for bpf programs”)

Appendix: Spectre v2 & BPF work (extract)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=290af86629b25ffd1ed6232c4e9107da031705cb
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a493a87f38cfa48caaa95c9347be2d914c6fdf29
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ce02ef06fcf7a399a6276adb83f37373d10cbbe1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a9d57ef15cbe327fe54416dd194ee0ea66ae53a4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=09772d92cd5ad998b0d5f6f46cd1658f8cb698cf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=81c22041d9f19df07b9cba95e3cd02e0f41bc1e1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=da765a2f599304a81a25e77908d1790414ecdbb6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d2e4c1e6c2947269346054ac8937ccfe9e0bcc6b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=428d5df1fa4f28daf622c48dd19da35585c9053c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=cc52d9140aa920d8d61c7f6de3fff5fea6692ea9
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=75ccbef6369e94ecac696a152a998a978d41376b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7e6897f95935973c3253fd756135b5ea58043dc8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0e9f6841f664f801a69d27f765dc70b8a93e1959


af86ca4e3088 (“bpf: Prevent memory disambiguation attack”)

f5e81d111750 (“bpf: Introduce BPF nospec instruction for mitigating Spectre v4”)

2039f26f3aca (“bpf: Fix leakage due to insufficient speculative store bypass mitigation”)

Appendix: Spectre v4 & BPF work (extract) 

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=af86ca4e3088fe5eacf2f7e58c01fa68ca067672
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5e81d1117501546b7be050c5fbafa6efd2c722c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2039f26f3aca5b0e419b98f65dd36481337b86ee


“Sound, Precise, and Fast Abstract Interpretation with Tristate Numbers”, Vishwanathan et al.

“Eliminating bugs in BPF JITs using automated formal verification”, Nelson et al.

“A proof-carrying approach to building correct and flexible BPF verifiers”, Nelson et al.

“Automatically optimizing BPF programs using program synthesis”, Xu et al.

“Simple and Precise Static Analysis of Untrusted Linux Kernel Extensions”, Gershuni et al.

“An Analysis of Speculative Type Confusion Vulnerabilities in the Wild”, Kirzner et al.

Appendix: Research related to BPF (extract) 

https://arxiv.org/abs/2105.05398
https://linuxplumbersconf.org/event/7/contributions/685/
https://linuxplumbersconf.org/event/11/contributions/944/
https://linuxplumbersconf.org/event/11/contributions/951/
https://vbpf.github.io/assets/prevail-paper.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/kirzner

